Extracellular vesicle-mediated delivery of molecular compounds into gametes and embryos: learning from nature.

نویسندگان

  • Natalia Barkalina
  • Celine Jones
  • Matthew J A Wood
  • Kevin Coward
چکیده

BACKGROUND Currently, even the most sophisticated methods of assisted reproductive technology (ART) allow us to achieve live births in only approximately 30% of patients, indicating that our understanding of the fine mechanisms underlying reproduction is far from ideal. One of the main challenges associated with studies of gamete structure and function is that these cells are remarkably resistant towards the uptake of exogenous substances, including 'molecular research tools' such as drugs, biomolecules and intracellular markers. This phenomenon can affect not only the performance of reproductive biology research techniques, but also the outcomes of the in vitro handling of gametes, which forms the cornerstone of ART. Improvement of intra-gamete delivery in a non-aggressive fashion is vital for the investigation of gamete physiology, and the advancement of infertility treatment. In this review, we outline the current state of nanomaterial-mediated delivery into gametes and embryos in vitro, and discuss the potential of a novel exciting drug delivery technology, based upon the use of targeted 'natural' nanoparticles known as extracellular vesicles (EVs), for reproductive science and ART, given the promising emerging data from other fields. METHODS A comprehensive electronic search of PubMed and Web of Science databases was performed using the following keywords: 'nanoparticles', 'nanomaterials', 'cell-penetrating peptides', 'sperm', 'oocyte', 'egg', 'embryo', 'exosomes', 'microvesicles', 'extracellular vesicles', 'delivery', 'reproduction', to identify the relevant research and review articles, published in English up to January 2015. The reference lists of identified publication were then scanned to extract additional relevant publications. RESULTS Biocompatible engineered nanomaterials with high loading capacity, stability and selective affinity represent a potential versatile tool for the minimally invasive internalization of molecular cargo into gametes and embryos. However, it is becoming increasingly clear that the translation of these experimental tools into clinical applications is likely to be limited by their non-biodegradable nature. To allow the subsequent use of these methodologies for clinical ART, studies should utilize biodegradable delivery platforms, which mimic natural mechanisms of molecular cargo trafficking as closely as possible. Currently, EVs represent the most physiological intracellular delivery tools for reproductive science and medicine. These natural mediators of cell communication combine the benefits of engineered nanomaterials, such as the potential for in vitro production, targeting and loading, with the essential feature of biodegradability. CONCLUSION We anticipate that future investigations into the possibility of applying EVs for the intentional intracellular delivery of molecular compounds into gametes and embryos will open new horizons for reproductive science and clinical ART, ultimately leading to improvements in patient care.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-72: Ovine Oocytes Vitrified at Germinal Vesicle Stage as Cytoplast Recipients forSomatic Cell Nuclear Transfer (SCNT)

Background: The cryopreservation of immature oocytes at the germinal vesicle (GV) stage would create an easily accessible, nonseasonal source of female gametes for research and reproduction. The present study investigated the ability of ovine oocytes vitrified at the GV stage using a cryoloop to be subsequently matured, fertilized and cultured in vitro to blastocyst-stage embryos. Materials and...

متن کامل

Rab11 is required for maintenance of cell shape via βPS integrin mediated cell adhesion in Drosophila

In eukaryotes, vesicle trafficking is regulated by the small monomeric GTPases of the Rab protein family. Rab11, (a subfamily of the Ypt/Rab gene family) an evolutionarily conserved, ubiquitously expressed subfamily of small monomeric Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomal compartment. In an earlier communication, we have shown th...

متن کامل

I-11: Cryopreservation of Canine Embryos

Background: The assisted reproductive techniques (ARTs) such as in vitro fertilization, embryo transfer and cryopreservation of gametes have considerably contributed to the development of biomedical sciences in addition to improved breeding in domestic animals and infertility treatment in humans. However, ARTs used in canine species have strictly limited utility when compared with other mammali...

متن کامل

In Vitro Production of Germ Cells from Stem Cells: Hypes and Hopes

Several lines of evidence have reported that mouse ESCs can successfully differentiate into primordial germ cells (PGC) as well as into mature male and female gametes. Human ESCs and adult stem cells (ASCs) can also differentiate into PGCs. Differentiation of ESCs into germ cells of various stages seems to be a spontaneous and quick process, probably due to the nature of ESCs themselves and the...

متن کامل

I-10: Transcriptomics in Oocyte Mediated Cellular Reprogramming

a:4:{s:10:"Background";s:1707:"Early embryonic development in mammals begins in transcriptional silence with an oocyte-mediated transcriptional reprogramming of parental gametes occurs during a so called across-the-board process of “erase-and-rebuild”. In this process, the parental transcription programs are erased long before (maternal) or soon thereafter (paternal) fertilization to generate a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Human reproduction update

دوره 21 5  شماره 

صفحات  -

تاریخ انتشار 2015